A classification of generalized quantum statistics associated with the exceptional Lie (super)algebras
نویسنده
چکیده
Generalized quantum statistics (GQS) associated to a Lie algebra or Lie superalgebra extends the notion of para-Bose or para-Fermi statistics. Such GQS have been classified for all classical simple Lie algebras and basic classical Lie superalgebras. In the current paper we finalize this classification for all exceptional Lie algebras and superalgebras. Since the definition of GQS is closely related to a certain Z-grading of the Lie (super)algebra G, our classification reproduces some known Z-gradings of exceptional Lie algebras. For exceptional Lie superalgebras such a classification of Z-gradings has not been given before. Running title: Classification for exceptional Lie (super)algebras PACS: 02.20.+b, 03.65.Fd, 05.30-d. Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
منابع مشابه
A classification of generalized quantum statistics associated with classical Lie algebras
Generalized quantum statistics such as para-Fermi statistics is characterized by certain triple relations which, in the case of para-Fermi statistics, are related to the orthogonal Lie algebra Bn = so(2n + 1). In this paper, we give a quite general definition of “a generalized quantum statistics associated to a classical Lie algebra G”. This definition is closely related to a certain Z-grading ...
متن کاملQuasiboson Representations of Sl(n + 1) and Generalized Quantum Statistics
Generalized quantum statistics will be presented in the context of representation theory of Lie (super)algebras. This approach provides a natural mathematical framework, as is illustrated by the relation between para-Bose and para-Fermi operators and Lie (super)algebras of type B. Inspired by this relation, A-statistics is introduced, arising from representation theory of the Lie algebra A n. T...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملBraided m-Lie Algebras
Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of...
متن کاملLie superalgebraic framework for generalization of quantum statistics
Para-Bose and para-Fermi statistics are known to be associated with representations of the Lie (super)algebras of class B. We develop a framework for the generalization of quantum statistics based on the Lie superalgebras A(m|n), B(m|n), C(n) and D(m|n).
متن کامل