A classification of generalized quantum statistics associated with the exceptional Lie (super)algebras

نویسنده

  • N. I. Stoilova
چکیده

Generalized quantum statistics (GQS) associated to a Lie algebra or Lie superalgebra extends the notion of para-Bose or para-Fermi statistics. Such GQS have been classified for all classical simple Lie algebras and basic classical Lie superalgebras. In the current paper we finalize this classification for all exceptional Lie algebras and superalgebras. Since the definition of GQS is closely related to a certain Z-grading of the Lie (super)algebra G, our classification reproduces some known Z-gradings of exceptional Lie algebras. For exceptional Lie superalgebras such a classification of Z-gradings has not been given before. Running title: Classification for exceptional Lie (super)algebras PACS: 02.20.+b, 03.65.Fd, 05.30-d. Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A classification of generalized quantum statistics associated with classical Lie algebras

Generalized quantum statistics such as para-Fermi statistics is characterized by certain triple relations which, in the case of para-Fermi statistics, are related to the orthogonal Lie algebra Bn = so(2n + 1). In this paper, we give a quite general definition of “a generalized quantum statistics associated to a classical Lie algebra G”. This definition is closely related to a certain Z-grading ...

متن کامل

Quasiboson Representations of Sl(n + 1) and Generalized Quantum Statistics

Generalized quantum statistics will be presented in the context of representation theory of Lie (super)algebras. This approach provides a natural mathematical framework, as is illustrated by the relation between para-Bose and para-Fermi operators and Lie (super)algebras of type B. Inspired by this relation, A-statistics is introduced, arising from representation theory of the Lie algebra A n. T...

متن کامل

Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

متن کامل

Braided m-Lie Algebras

Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of...

متن کامل

Lie superalgebraic framework for generalization of quantum statistics

Para-Bose and para-Fermi statistics are known to be associated with representations of the Lie (super)algebras of class B. We develop a framework for the generalization of quantum statistics based on the Lie superalgebras A(m|n), B(m|n), C(n) and D(m|n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006